Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (201)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38078616

RESUMEN

The interest in seaweeds as an abundant feedstock to obtain valuable and multitarget bioactive ingredients is continuously growing. In this work, we explore the potential of Gracilaria gracilis, an edible red seaweed cultivated worldwide for its commercial interest as a source of agar and other ingredients for cosmetic, pharmacological, food, and feed applications. G. gracilis growth conditions were optimized through vegetative propagation and sporulation while manipulating the physicochemical conditions to achieve a large biomass stock. Green extraction methodologies with ethanol and water were performed over the seaweed biomass. The bioactive potential of extracts was assessed through a set of in vitro assays concerning their cytotoxicity, antioxidant, and antimicrobial properties. Additionally, dried seaweed biomass was incorporated into pasta formulations to increase food's nutritional value. Pigments extracted from G. gracilis have also been incorporated into yogurt as a natural colorant, and their stability was evaluated. Both products were submitted to the appreciation of a semi-trained sensorial panel aiming to achieve the best final formulation before reaching the market. Results support the versatility of G. gracilis whether it is applied as a whole biomass, extracts and/or pigments. Through implementing several optimized protocols, this work allows the development of products with the potential to profit the food, cosmetic, and aquaculture markets, promoting environmental sustainability and a blue circular economy. Moreover, and in line with a biorefinery approach, the residual seaweed biomass will be used as biostimulant for plant growth or converted to carbon materials to be used in water purification of the in-house aquaculture systems of MARE-Polytechnic of Leiria, Portugal.


Asunto(s)
Gracilaria , Algas Marinas , Algas Marinas/química , Gracilaria/química , Antioxidantes , Verduras , Agar
2.
Antioxidants (Basel) ; 12(9)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37759987

RESUMEN

This work addresses the potential of the red seaweed Gelidium corneum as a source of bioactive ingredients for skin health and wellness in response to the growing awareness regarding the significance of sustainable strategies in developing new nature-based dermocosmetic products. Hydroalcoholic extracts from the dried biomass were subjected to sequential liquid-liquid partitions, affording five different fractions (F1-F5). Their cosmetic potential was assessed through a set of in vitro assays concerning their antioxidant, photoprotective, and healing properties. Additionally, their cytotoxicity in HaCaT cells and their capacity to induce inflammation in RAW 264.7 cells were also evaluated. As a proof-of-concept, O/W emulsions were prepared, and emulsion stability was assessed by optical microscopy, droplet size analysis, centrifugation tests, and rheology analysis. Furthermore, in vivo tests were conducted with the final formulation to assess its antioxidant capacity. At subtoxic concentrations, the most lipophilic fraction has provided photoprotection against UV light-induced photooxidation in HaCaT cells. This was conducted together with the aqueous fraction, which also displayed healing capacities. Regarding the physical and stability assays, the best performance was achieved with the formulation containing 1% aqueous extract, which exhibited water retention and antioxidant properties in the in vivo assay. In summary, Gelidium corneum displayed itself as a potential source of bioactive ingredients with multitarget properties for dermatological use.

3.
Mar Drugs ; 21(8)2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37623732

RESUMEN

The increase in the life expectancy average has led to a growing elderly population, thus leading to a prevalence of neurodegenerative disorders, such as Parkinson's disease (PD). PD is the second most common neurodegenerative disorder and is characterized by a progressive degeneration of the dopaminergic neurons in the substantia nigra pars compacta (SNpc). The marine environment has proven to be a source of unique and diverse chemical structures with great therapeutic potential to be used in the treatment of several pathologies, including neurodegenerative impairments. This review is focused on compounds isolated from marine organisms with neuroprotective activities on in vitro and in vivo models based on their chemical structures, taxonomy, neuroprotective effects, and their possible mechanism of action in PD. About 60 compounds isolated from marine bacteria, fungi, mollusk, sea cucumber, seaweed, soft coral, sponge, and starfish with neuroprotective potential on PD therapy are reported. Peptides, alkaloids, quinones, terpenes, polysaccharides, polyphenols, lipids, pigments, and mycotoxins were isolated from those marine organisms. They can act in several PD hallmarks, reducing oxidative stress, preventing mitochondrial dysfunction, α-synuclein aggregation, and blocking inflammatory pathways through the inhibition translocation of NF-kB factor, reduction of human tumor necrosis factor α (TNF-α), and interleukin-6 (IL-6). This review gathers the marine natural products that have shown pharmacological activities acting on targets belonging to different intracellular signaling pathways related to PD development, which should be considered for future pre-clinical studies.


Asunto(s)
Antozoos , Productos Biológicos , Enfermedad de Parkinson , Anciano , Humanos , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Vendajes , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Neuronas Dopaminérgicas
4.
Polymers (Basel) ; 15(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36679279

RESUMEN

The marine environment presents itself as a treasure chest, full of a vast diversity of organisms yet to be explored. Among these organisms, macroalgae stand out as a major source of natural products due to their nature as primary producers and relevance in the sustainability of marine ecosystems. Sulfated polysaccharides (SPs) are a group of polymers biosynthesized by macroalgae, making up part of their cell wall composition. Such compounds are characterized by the presence of sulfate groups and a great structural diversity among the different classes of macroalgae, providing interesting biotechnological and therapeutical applications. However, due to the high complexity of these macromolecules, their chemical characterization is a huge challenge, driving the use of complementary physicochemical techniques to achieve an accurate structural elucidation. This review compiles the reports (2016-2021) of state-of-the-art methodologies used in the chemical characterization of macroalgae SPs aiming to provide, in a simple way, a key tool for researchers focused on the structural elucidation of these important marine macromolecules.

5.
Mar Drugs ; 20(10)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36286475

RESUMEN

Seaweeds are a great source of compounds with cytotoxic properties with the potential to be used as anticancer agents. This study evaluated the cytotoxic and proteasome inhibitory activities of 12R-hydroxy-bromosphaerol, 12S-hydroxy-bromosphaerol, and bromosphaerol isolated from Sphaerococcus coronopifolius. The cytotoxicity was evaluated on malignant cell lines (A549, CACO-2, HCT-15, MCF-7, NCI-H226, PC-3, SH-SY5Y, and SK-MEL-28) using the MTT and LDH assays. The ability of compounds to stimulate the production of hydrogen peroxide (H2O2) and to induce mitochondrial dysfunction, the externalization of phosphatidylserine, Caspase-9 activity, and changes in nuclear morphology was also studied on MCF-7 cells. The ability to induce DNA damage was also studied on L929 fibroblasts. The proteasome inhibitory activity was estimated through molecular docking studies. The compounds exhibited IC50 values between 15.35 and 53.34 µM. 12R-hydroxy-bromosphaerol and 12S-hydroxy-bromosphaerol increased the H2O2 levels on MCF-7 cells, and bromosphaerol induced DNA damage on fibroblasts. All compounds promoted a depolarization of mitochondrial membrane potential, Caspase-9 activity, and nuclear condensation and fragmentation. The compounds have been shown to interact with the chymotrypsin-like catalytic site through molecular docking studies; however, only 12S-hydroxy-bromosphaerol evidenced interaction with ALA20 and SER169, key residues of the proteasome catalytic mechanism. Further studies should be outlined to deeply characterize and understand the potential of those bromoditerpenes for anticancer therapeutics.


Asunto(s)
Antineoplásicos , Neuroblastoma , Rhodophyta , Algas Marinas , Humanos , Inhibidores de Proteasoma/farmacología , Peróxido de Hidrógeno/farmacología , Citotoxinas/farmacología , Línea Celular Tumoral , Simulación del Acoplamiento Molecular , Fosfatidilserinas/farmacología , Complejo de la Endopetidasa Proteasomal , Células CACO-2 , Caspasa 9 , Quimotripsina/farmacología , Rhodophyta/química , Antineoplásicos/farmacología , Antineoplásicos/química , Apoptosis
6.
Molecules ; 27(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36235032

RESUMEN

The growing knowledge about the harmful effects caused by some synthetic ingredients present in skincare products has led to an extensive search for natural bioactives. Thus, this study aimed to investigate the dermatological potential of five fractions (F1-F5), obtained by a sequential extraction procedure, from the brown seaweed Saccorhiza polyschides. The antioxidant (DPPH, FRAP, ORAC and TPC), anti-enzymatic (collagenase, elastase, hyaluronidase and tyrosinase), antimicrobial (Staphylococcus epidermidis, Cutibacterium acnes and Malassezia furfur), anti-inflammatory (nitric oxide, tumor necrosis factor-α, interleukin-6 and interleukin-10) and photoprotective (reactive oxygen species) properties of all fractions were evaluated. The ethyl acetate fraction (F3) displayed the highest antioxidant and photoprotective capacity, reducing ROS levels in UVA/B-exposed 3T3 fibroblasts, and the highest anti-enzymatic capacity against tyrosinase (IC50 value: 89.1 µg/mL). The solid water-insoluble fraction (F5) revealed the greatest antimicrobial activity against C. acnes growth (IC50 value: 12.4 µg/mL). Furthermore, all fractions demonstrated anti-inflammatory potential, reducing TNF-α and IL-6 levels in RAW 264.7 macrophages induced with lipopolysaccharides. Chemical analysis of the S. polyschides fractions by NMR revealed the presence of different classes of compounds, including lipids, polyphenols and sugars. The results highlight the potential of S. polyschides to be incorporated into new nature-based skincare products.


Asunto(s)
Antiinfecciosos , Phaeophyceae , Antiinfecciosos/farmacología , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Colagenasas , Hialuronoglucosaminidasa , Interleucina-10 , Interleucina-6 , Lipopolisacáridos , Monofenol Monooxigenasa , Óxido Nítrico , Elastasa Pancreática , Extractos Vegetales/química , Especies Reactivas de Oxígeno , Azúcares , Factor de Necrosis Tumoral alfa , Agua
7.
Antibiotics (Basel) ; 11(4)2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35453232

RESUMEN

In recent decades, seaweeds have proven to be an excellent source of bioactive molecules. Presently, the seaweed Gelidium corneum is harvested in a small area of the Portuguese coast exclusively for agar extraction. The aim of this work was to fully disclosure Gelidium corneum as a sustainable source of antimicrobial ingredients for new dermatological formulations, highlighting its potential to be explored in a circular economy context. For this purpose, after a green sequential extraction, these seaweed fractions (F1-F5) were chemically characterized (1H NMR) and evaluated for their antimicrobial potential against Staphylococcus aureus, Staphylococcus epidermidis and Cutibacterium acnes. The most active fractions were also evaluated for their effects on membrane potential, membrane integrity and DNA damage. Fractions F2 and F3 displayed the best results, with IC50 values of 16.1 (7.27-23.02) µg/mL and 51.04 (43.36-59.74) µg/mL against C. acnes, respectively, and 53.29 (48.75-57.91) µg/mL and 102.80 (87.15-122.30) µg/mL against S. epidermidis, respectively. The antimicrobial effects of both fractions seem to be related to membrane hyperpolarization and DNA damage. This dual mechanism of action may provide therapeutic advantages for the treatment of skin dysbiosis-related diseases.

8.
Biomed Pharmacother ; 149: 112886, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35378501

RESUMEN

Nature has revealed to be a key source of innovative anticancer drugs. This study evaluated the antitumour potential of the marine bromoditerpene sphaerococcenol A on different cancer cellular models. Dose-response analyses (0.1-100 µM; 24 h) were accomplished in eight different tumour cell lines (A549, CACO-2, HCT-15, MCF-7, NCI-H226, PC-3, SH-SY5Y, SK-MEL-28). Deeper studies were conducted on MFC-7 cells, namely, determination of hydrogen peroxide (H2O2) levels and evaluation of apoptosis biomarkers (phosphatidylserine membrane translocation, mitochondrial dysfunction, Caspase-9 activity, and DNA changes). The ability of the compound to induce genotoxicity was verified in L929 fibroblasts. Sphaerococcenol A capacity to impact colorectal-cancer stem cells (CSCs) tumourspheres (HT29, HCT116, SW620) was evaluated by determining tumourspheres viability, number, and area, as well as the proteasome inhibitory activity. Sphaerococcenol A hepatoxicity was studied in AML12 hepatocytes. The compound exhibited cytotoxicity in all malignant cell lines (IC50 ranging from 4.5 to 16.6 µM). MCF-7 cells viability loss was accompanied by H2O2 generation, mitochondrial dysfunction, Caspase-9 activation and DNA nuclear morphology changes. Furthermore, the compound displayed the lowest IC50 on HT29-derived tumourspheres (0.70 µM), followed by HCT116 (1.77 µM) and SW620 (2.74 µM), impacting the HT29 tumoursphere formation by reducing their number and area. Finally, the compound displayed low cytotoxicity on AML12 hepatocytes without genotoxicity. Overall, sphaerococcenol A exhibits broad cytotoxic effects on different tumour cells, increasing H2O2 production and apoptosis. It also affects colorectal CSCs-enriched tumoursphere development. These data highlight the relevance to include sphaerococcenol A in further pharmacological studies aiming cancer treatments.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Antineoplásicos/farmacología , Apoptosis , Células CACO-2 , Caspasa 9 , Línea Celular Tumoral , ADN , Diterpenos , Humanos , Peróxido de Hidrógeno/farmacología
9.
J Sci Food Agric ; 102(12): 5568-5575, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35439330

RESUMEN

BACKGROUD: In recent years, research on the bioactive properties of macroalgae has increased, due to the great interest in exploring new products that can contribute to improve human health and wellbeing. In the present study, the antioxidant and antimicrobial potential of six different brown algae of the Fucales order were evaluated, namely Ericaria selaginoides, Ericaria amentacea, Gongolaria baccata, Gongolaria usneoides, Cystoseira compressa and Sargassum vulgare (collected along the Mediterranean and Atlantic coasts). The antioxidant capacity was measured by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, the oxygen radical absorbent capacity (ORAC) and the ferric reducing antioxidant power (FRAP) and were related to the total phenolic content (TPC). The antimicrobial activity was evaluated measuring the growth inhibition of Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. RESULTS: The highest antioxidant capacity was obtained for Ericaria selaginoides revealing the highest capacity to scavenge DPPH radical [half maximal effective concentration (EC50 ) = 27.02 µg mL-1 ], highest FRAP (1761.19 µmol FeSO4 equivalents g-1 extract), high ORAC (138.92 µmol TE g-1 extract), alongside to its high TPC (121.5 GAE g-1 extract). This species also reported the highest antimicrobial capacity against Staphylococcus aureus [half maximal inhibitory concentration (IC50 ) = 268 µg mL-1 ]. CONCLUSIONS: Among all studied seaweed, Ericaria selaginoides reveals the highest antioxidant and antimicrobial activities, and thus should be explored as a natural food additive and/or functional ingredient. © 2022 Society of Chemical Industry.


Asunto(s)
Antiinfecciosos , Phaeophyceae , Algas Marinas , Antibacterianos/farmacología , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antioxidantes/química , Humanos , Mar Mediterráneo , Fenoles/química , Extractos Vegetales/química , Algas Marinas/química , Staphylococcus aureus
10.
Int J Mol Sci ; 23(6)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35328335

RESUMEN

Luteolin is one of the most common flavonoids present in edible plants and its potential benefits to the central nervous system include decrease of microglia activation, neuronal damage and high antioxidant properties. The aim of this research was to evaluate the neuroprotective, antioxidant and anti-inflammatory activities of luteolin-7-O-glucoside (Lut7). Undifferentiated and retinoic acid (RA)-differentiated SH-SY5Y cells were pretreated with Lut7 and incubated with 6-hydroxydopamine (6-OHDA). Cytotoxic and neuroprotective effects were determined by MTT assay. Antioxidant capacity was determined by DPPH, FRAP, and ORAC assays. ROS production, mitochondrial membrane potential (ΔΨm), Caspase-3 activity, acetylcholinesterase inhibition (AChEI) and nuclear damage were also determined in SH-SY5Y cells. TNF-α, IL-6 and IL-10 release were evaluated in LPS-induced RAW264.7 cells by ELISA. In undifferentiated SH-SY5Y cells, Lut7 increased cell viability after 24 h, while in RA-differentiated SH-SY5Y cells, Lut7 increased cell viability after 24 and 48 h. Lut7 showed a high antioxidant activity when compared with synthetic antioxidants. In undifferentiated cells, Lut7 prevented mitochondrial membrane depolarization induced by 6-OHDA treatment, decreased Caspase-3 and AChE activity, and inhibited nuclear condensation and fragmentation. In LPS-stimulated RAW264.7 cells, Lut7 treatment reduced TNF-α levels and increased IL-10 levels after 3 and 24 h, respectively. In summary, the results suggest that Lut7 has neuroprotective effects, thus, further studies should be considered to validate its pharmacological potential in more complex models, aiming the treatment of neurodegenerative diseases.


Asunto(s)
Neuroblastoma , Fármacos Neuroprotectores , Acetilcolinesterasa/metabolismo , Antioxidantes/metabolismo , Apoptosis , Caspasa 3/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Flavonas , Glucósidos , Humanos , Interleucina-10/metabolismo , Lipopolisacáridos/farmacología , Potencial de la Membrana Mitocondrial , Neuroblastoma/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Oxidopamina/toxicidad , Tretinoina/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
11.
Biology (Basel) ; 11(3)2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35336831

RESUMEN

Resulting from the growing human population and the long dependency on fossil-based energies, the planet is facing a critical rise in global temperature, which is affecting all ecosystem networks. With a growing consciousness this issue, the EU has defined several strategies towards environment sustainability, where biodiversity restoration and preservation, pollution reduction, circular economy, and energetic transition are paramount issues. To achieve the ambitious goal of becoming climate-neutral by 2050, it is vital to mitigate the environmental footprint of the energetic transition, namely heavy metal pollution resulting from mining and processing of raw materials and from electronic waste disposal. Additionally, it is vital to find alternative materials to enhance the efficiency of energy storage devices. This review addresses the environmental challenges associated with energetic transition, with particular emphasis on the emergence of new alternative materials for the development of cleaner energy technologies and on the environmental impacts of mitigation strategies. We compile the most recent advances on natural sources, particularly seaweed, with regard to their use in metal recycling, bioremediation, and as valuable biomass to produce biochar for electrochemical applications.

12.
Mar Drugs ; 19(11)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34822503

RESUMEN

Inflammation is a double-edged sword, as it can have both protective effects and harmful consequences, which, combined with oxidative stress (OS), can lead to the development of deathly chronic inflammatory conditions. Over the years, research has evidenced the potential of marine sponges as a source of effective anti-inflammatory therapeutic agents. Within this framework, the purpose of this study was to evaluate the antioxidant and the anti-inflammatory potential of the marine sponge Cliona celata. For this purpose, their organic extracts (C1-C5) and fractions were evaluated concerning their radical scavenging activity through 2,2-diphenyl-1-picrylhydrazyl radical (DPPH), ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC), and anti-inflammatory activity through a (lipopolysaccharides (LPS)-induced inflammation on RAW 264.7 cells) model. Compounds present in the two most active fractions (F5 and F13) of C4 were tentatively identified by gas chromatography coupled to mass spectrometry (GC-MS). Even though samples displayed low antioxidant activity, they presented a high anti-inflammatory capacity in the studied cellular inflammatory model when compared to the anti-inflammatory standard, dexamethasone. GC-MS analysis led to the identification of n-hexadecanoic acid, cis-9-hexadecenal, and 13-octadecenal in fraction F5, while two major compounds, octadecanoic acid and cholesterol, were identified in fraction F13. The developed studies demonstrated the high anti-inflammatory activity of the marine sponge C. celata extracts and fractions, highlighting its potential for further therapeutic applications.


Asunto(s)
Antineoplásicos/farmacología , Poríferos , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antineoplásicos/química , Antioxidantes/química , Antioxidantes/farmacología , Organismos Acuáticos , Línea Celular Tumoral/efectos de los fármacos , Células HT29/efectos de los fármacos , Humanos , Lipopolisacáridos , Ratones , Portugal , Células RAW 264.7/efectos de los fármacos
13.
Pharmacol Res ; 168: 105589, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33812007

RESUMEN

The treatment of Parkinson´s disease (PD) has benefited from significant advances resulting from the increasing research efforts focused on new therapeutics. However, the current treatments for PD are mostly symptomatic, alleviating disease symptoms without reversing or retarding disease progression. Thus, it is critical to find new molecules that can result in more effective treatments. Within this framework, this study aims to evaluate the neuroprotective and anti-inflammatory effects of three compounds (eleganolone, eleganonal and fucosterol) isolated from the brown seaweed Bifurcaria bifurcata. In vitro neuroprotective effects were evaluated on a PD cellular model induced by the neurotoxin 6-hydroxydopamine (6-OHDA) on SH-SY5Y human cells, while lipopolysaccharide (LPS) - stimulated RAW 264.7 macrophages were used to evaluate the anti-inflammatory potential. Additionally, the underlying mechanisms of action were also investigated. Compounds were isolated by preparative chromatographic methods and their structural elucidation attained by NMR spectroscopy. Among the tested compounds, eleganolone (0.1-1 µM; 24 h) reverted the neurotoxicity induced by 6-OHDA in about 20%. The neuroprotective effects were mediated by mitochondrial protection, reduction of oxidative stress, inflammation and apoptosis, and inhibition of NF-kB pathway. The results suggest that eleganolone may provide advantages in the treatment of neurodegenerative conditions and, therefore, should be considered for future preclinical studies.


Asunto(s)
Antiinflamatorios/farmacología , Diterpenos/farmacología , Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Animales , Línea Celular Tumoral , Citocinas/análisis , Diterpenos/uso terapéutico , Humanos , Ratones , Óxido Nítrico/biosíntesis , Células RAW 264.7 , Algas Marinas/química , Factor de Transcripción ReIA/metabolismo
14.
Molecules ; 26(5)2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33806445

RESUMEN

Marine natural products have exhibited uncommon chemical structures with relevant antitumor properties highlighting their potential to inspire the development of new anticancer agents. The goal of this work was to study the antitumor activities of the brominated diterpene sphaerodactylomelol, a rare example of the dactylomelane family. Cytotoxicity (10-100 µM; 24 h) was evaluated on tumor cells (A549, CACO-2, HCT-15, MCF-7, NCI-H226, PC-3, SH-SY5Y, SK-ML-28) and the effects estimated by MTT assay. Hydrogen peroxide (H2O2) levels and apoptosis biomarkers (membrane translocation of phosphatidylserine, depolarization of mitochondrial membrane potential, Caspase-9 activity, and DNA condensation and/or fragmentation) were studied in the breast adenocarcinoma cellular model (MCF-7) and its genotoxicity on mouse fibroblasts (L929). Sphaerodactylomelol displayed an IC50 range between 33.04 and 89.41 µM without selective activity for a specific tumor tissue. The cells' viability decrease was accompanied by an increase on H2O2 production, a depolarization of mitochondrial membrane potential and an increase of Caspase-9 activity and DNA fragmentation. However, the DNA damage studies in L929 non-malignant cell line suggested that this compound is not genotoxic for normal fibroblasts. Overall, the results suggest that the cytotoxicity of sphaerodactylomelol seems to be mediated by an increase of H2O2 levels and downstream apoptosis.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis , Neoplasias de la Mama/tratamiento farmacológico , Diterpenos/farmacología , Fibroblastos/efectos de los fármacos , Rhodophyta/química , Animales , Antineoplásicos/química , Neoplasias de la Mama/patología , Proliferación Celular , Células Cultivadas , Daño del ADN , Diterpenos/química , Femenino , Humanos , Peróxido de Hidrógeno/química , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones
15.
Int J Mol Sci ; 22(4)2021 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-33672866

RESUMEN

Parkinsons Disease (PD) is the second most common neurodegenerative disease worldwide, and is characterized by a progressive degeneration of dopaminergic neurons. Without an effective treatment, it is crucial to find new therapeutic options to fight the neurodegenerative process, which may arise from marine resources. Accordingly, the goal of the present work was to evaluate the ability of the monoterpenoid lactone Loliolide, isolated from the green seaweed Codium tomentosum, to prevent neurological cell death mediated by the neurotoxin 6-hydroxydopamine (6-OHDA) on SH-SY5Y cells and their anti-inflammatory effects in RAW 264.7 macrophages. Loliolide was obtained from the diethyl ether extract, purified through column chromatography and identified by NMR spectroscopy. The neuroprotective effects were evaluated by the MTT method. Cells' exposure to 6-OHDA in the presence of Loliolide led to an increase of cells' viability in 40%, and this effect was mediated by mitochondrial protection, reduction of oxidative stress condition and apoptosis, and inhibition of the NF-kB pathway. Additionally, Loliolide also suppressed nitric oxide production and inhibited the production of TNF-α and IL-6 pro-inflammatory cytokines. The results suggest that Loliolide can inspire the development of new neuroprotective therapeutic agents and thus, more detailed studies should be considered to validate its pharmacological potential.


Asunto(s)
Antiinflamatorios/farmacología , Benzofuranos/farmacología , Chlorophyta/química , Lactonas/farmacología , Monoterpenos/farmacología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Animales , Antiinflamatorios/química , Benzofuranos/química , Línea Celular Tumoral , Citocinas/metabolismo , Fragmentación del ADN/efectos de los fármacos , Humanos , Lactonas/química , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Estructura Molecular , Monoterpenos/química , FN-kappa B/metabolismo , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Óxido Nítrico/metabolismo , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo
16.
Mar Drugs ; 19(3)2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33671016

RESUMEN

The ever-increasing interest in keeping a young appearance and healthy skin has leveraged the skincare industry. This, coupled together with the increased concern regarding the safety of synthetic products, has boosted the demand for new and safer natural ingredients. Accordingly, the aim of this study was to evaluate the dermatological potential of the brown seaweed Carpomitra costata. The antioxidant, anti-enzymatic, antimicrobial, photoprotective and anti-inflammatory properties of five C. costata fractions (F1-F5) were evaluated. The ethyl acetate fraction (F3) demonstrated the most promising results, with the best ability to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals (EC50 of 140.1 µg/mL) and the capacity to reduce reactive oxygen species (ROS) production promoted by UVA and UVB radiation in 3T3 cells, revealing its antioxidant and photoprotective potential. This fraction also exhibited the highest anti-enzymatic capacity, inhibiting the activities of collagenase, elastase and tyrosinase (IC50 of 7.2, 4.8 and 85.9 µg/mL, respectively). Moreover, F3 showed anti-inflammatory potential, reducing TNF-α and IL-6 release induced by LPS treatment in RAW 264.7 cells. These bioactivities may be related to the presence of phenolic compounds, such as phlorotannins, as demonstrated by NMR analysis. The results highlight the potential of C. costata as a source of bioactive ingredients for further dermatological applications.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Fármacos Dermatológicos/aislamiento & purificación , Phaeophyceae/química , Células 3T3 , Animales , Antiinflamatorios/aislamiento & purificación , Antioxidantes/aislamiento & purificación , Fármacos Dermatológicos/farmacología , Depuradores de Radicales Libres/aislamiento & purificación , Depuradores de Radicales Libres/farmacología , Concentración 50 Inhibidora , Ratones , Fenoles/aislamiento & purificación , Fenoles/farmacología , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo
17.
Sci Total Environ ; 750: 141372, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32853930

RESUMEN

Biofouling is a complex phenomenon that affects all maritime dependent industries. The accumulation of both micro and macro-organisms in immerged structures increases significantly the maintenance expenses, and thus the use of antifouling substances is inevitable. Although with recognized antifouling properties, the available antifouling coatings are known to induce negative impacts in aquatic ecosystems. Therefore, greener alternatives are urgently required. Living underwater, marine organisms are prone to biofouling and some have developed strategies to defend themselves against undesirable organisms, which include the production of bioactive substances. As a result, marine organisms are promising sources of natural antifouling substances. Within this framework, the marine invasive seaweeds Sargassum muticum and Asparagopsis armata were addressed for antifouling compounds biodiscovery. Both seaweeds revealed antifouling properties against microfoulers, namely algicidal and anti-biofilm activities; however Asparagopsis armata stand out for its capacity to inhibit marine bacteria and microalgae growth, to decrease biofilm formation, and for acting as a neurotransmitter disruptor through the inhibition of acetylcholinesterase activity. By addressing invasive species, the problematic of the biological material supply for industrial purposes is surpassed while mitigating the negative impacts of invasive species through specimen's collection.


Asunto(s)
Incrustaciones Biológicas , Rhodophyta , Sargassum , Algas Marinas , Organismos Acuáticos , Incrustaciones Biológicas/prevención & control , Ecosistema
18.
Molecules ; 25(22)2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33238492

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disorder, and is characterized by a progressive degeneration of the dopaminergic neurons in the substantianigra. Although not completely understood, several abnormal cellular events are known to be related with PD progression, such as oxidative stress, mitochondrial dysfunction and apoptosis. Accordingly, the aim of this study was to evaluate the neuroprotective effects of Codium tomentosum enriched fractions in a neurotoxicity model mediated by 6-hydroxydopamine (6-OHDA) on SH-SY5Y human cells, and the disclosure of their mechanisms of action. Additionally, a preliminary chemical screening of the most promising bioactive fractions of C. tomentosum was carried out by GC-MS analysis. Among the tested fractions, four samples exhibited the capacity to revert the neurotoxicity induced by 6-OHDA to values higher or similar to the vitamin E (90.11 ± 3.74% of viable cells). The neuroprotective effects were mediated by the mitigation of reactive oxygen species (ROS) generation, mitochondrial dysfunctions and DNA damage, together with the reduction of Caspase-3 activity. Compounds belonging to different chemical classes, such as terpenes, alcohols, carboxylic acids, aldehydes, esters, ketones, saturated and unsaturated hydrocarbons were tentatively identified by GC-MS. The results show that C. tomentosum is a relevant source of neuroprotective agents, with particular interest for preventive therapeutics.


Asunto(s)
Productos Biológicos/farmacología , Chlorophyta/química , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Animales , Antioxidantes , Apoptosis/efectos de los fármacos , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Productos Biológicos/uso terapéutico , Línea Celular Tumoral , Fraccionamiento Químico , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Enfermedades del Sistema Nervioso/diagnóstico , Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/metabolismo , Neuroprotección/efectos de los fármacos , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/aislamiento & purificación , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Enfermedad de Parkinson , Fenoles/química , Especies Reactivas de Oxígeno/metabolismo , Algas Marinas/química
19.
Mol Cell Biochem ; 473(1-2): 229-238, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32656679

RESUMEN

Neurodegenerative diseases, such as Parkinson's disease, represent a biggest challenge for medicine, imposing high social and economic impacts. As a result, it is of utmost importance to develop new therapeutic strategies. The present work evaluated the neuroprotective potential of seaweeds extracts on an in vitro dopamine (DA)-induced neurotoxicity cellular model. The neuroprotective effects on SH-SY5Y cells' viability were estimated by the MTT assay. Changes in mitochondrial membrane potential (MMP), caspase-3 activity, and hydrogen peroxide (H2O2) production were determined. DA (30-3000 µM; 24 h) treatment decreased SH-SY5Y cells' viability in concentration and time-dependent manner, increasing the H2O2 production, MMP depolarization, and caspase-3 activity. On the other hand, DA (1000 µM; 24 h) toxicity was reduced (10-15%) with Sargassum muticum and Codium tomentosum extracts (1000 µg/mL; 24 h). The highest neuroprotective activity was exhibited by a methanolic extract obtained from Saccorhiza polyschides, which completely blunted DA effects. Results show that the marine seaweed S. polyschides contain substances with high neuroprotective potential against the toxicity induced by DA, exhibiting anti-apoptotic effects associated with both mitochondrial protection and caspase-3 inhibition. S. polyschides reveals, therefore, to be an excellent source of bioactive molecules, for new drugs development aiming PD therapeutics.


Asunto(s)
Mezclas Complejas , Fármacos Neuroprotectores , Estrés Oxidativo/efectos de los fármacos , Enfermedad de Parkinson , Sargassum/química , Algas Marinas/química , Línea Celular Tumoral , Mezclas Complejas/química , Mezclas Complejas/farmacología , Humanos , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología
20.
Antioxidants (Basel) ; 9(7)2020 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-32664603

RESUMEN

Skin aging is a biological process influenced by intrinsic and extrinsic factors. The last ones, mainly exposure to UV radiation, increases reactive oxygen species (ROS) production leading to a loss of extracellular matrix, also enhanced by enzymatic degradation of matrix supporting molecules. Thus, and with the growing demand for eco-friendly skin products, natural compounds extracted from brown seaweeds revealed to be good candidates due to their broad range of bioactivities, especially as antioxidants. The aim of this study was to assess the dermo-cosmetic potential of different fractions obtained from the brown seaweed Fucus spiralis. For this purpose, in vitro antioxidant (Total Phenolic Content (TPC), 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, Ferric Reducing Antioxidant Power (FRAP), Oxygen Radical Absorbance Capacity (ORAC)), anti-enzymatic (collagenase, elastase and hyaluronidase), antimicrobial, anti-inflammatory (NO production) and photoprotective (ROS production) capacities were evaluated. Although nearly all fractions evidenced antioxidant effects, fraction F10 demonstrated the highest antioxidant ability (EC50 of 38.5 µg/mL, DPPH assay), and exhibited a strong effect as an inhibitor of collagenase (0.037 µg/mL) and elastase (3.0 µg/mL). Moreover, this fraction was also the most potent on reducing ROS production promoted by H2O2 (IC50 of 41.3 µg/mL) and by UVB (IC50 of 31.3 µg/mL). These bioactivities can be attributed to its high content of phlorotannins, as evaluated by LC-MS analysis, reinforcing the potential of F. spiralis for further dermatological applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...